Deconstructing quantum pulses

1 Introduction

In school, undergraduate courses and public media,
light waves are commonly pictured as sine functions
that extend indefinitely in time and space. However,
a distinct and arguably more intuitive approach to il-
lustrating light is through optical pulses, confined to a
specific temporal window. This text discusses the dis-
tinctions between these depictions and the methods of
describing them. Furthermore, we will see how to ex-
tend this description to the quantum level by consid-
ering single photon states. Lastly, we explore a specific
type of quantum entanglement of two photons within
such pulse forms.

2 Modes of the electromagnetic
field

We begin by introducing the essential equation that
defines the possible shapes of light waves. This equa-
tion is known as the wave equation:
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Any solution E(x,t) ! of this equation is a possible
shape of a light wave, which is then often also called
‘mode” of the electromagnetic field. The sine-wave
picture of light is related to the so called 'continu-
ous waves’, which are one set of solutions to Eq. (1),
and have the shape E(x, t) = Eqexp(i(x - ko — wot)) 2.
These waves are characterized by a frequency w, of
the wave, a propagation direction kq/|ko| and a polar-
ization Ey/|Ey|.

We restrict our following discussion to one spatial
point (x =0) and ignore the polarization (E — E),
since we are only interested in the spectral and tem-
poral profiles of the light-waves. For example the con-
tinuous waves then have the form E(t) = Ey exp(iwgt).
Note, that such a continuous wave corresponds to ex-
actly one frequency w, (compare Fig. 1).

In contrast it requires multiple frequencies to de-
scribe one of the pulsed shapes of light. This is because

1Bold written letters (like E) indicate a vector.

ZNote, that we use complex number to describe the field. The
field is then given by Re(E(t)). Because of Euler’s formula (ei‘p =
cos ¢ +isin¢) the continuous waves are then cos-functions.

the temporal shape of the light (E(t)) is connected to
the frequencies via the Fourier-transformations (FT)

E(w) = % f dwE(t)e " 2)

This is depicted for the example of a Gaussian shaped
pulse in Fig. 1, where then the Fourier-Iransformation
is also Gaussian. One can interpreter such a FT as a de-
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Figure 1: (left): Spectral domain representation, which is
given as the Fourier-transformation of the temporal domain
representation. (right): Temporal domain representation of
a plane wave and a Gaussian pulse.
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composition of E(t) into the continuous waves (com-
pare Fig. 2a). This is possible, because continuous
waves form a basis of all solutions to Eq. (1). This
becomes also apparent from the inverse Fourier trans-
formation

E(t)=%fdw@&ff; 3)
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which “constructs’ the original pulse from the contin-
uous waves.

However, these are not the only possible basis of
the solutions to Eq. (1) and for example the Hermite-
Gauss functions
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can also be used to decompose such pulses in an anal-
ogous way. In this case the decomposition takes the
form:

(4)

E(t) =Y, HG, (1) (5)
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with in general complex coefficients ¢, (compare Fig.
2b). Note, that in this case the decomposition runs
over a discrete set of coefficients, whereas the Fourier
transformation runs over the continues frequency.

Figure 2: a) Schematic depiction of a Fourier-
transformation. The temporal shape is decomposed in
the basis of continuous waves. b) Decomposition of the
pulse into the basis of Hermit-Gaussian shaped pulses.

3 One photon pulse

The plane waves and pulses discussed so far are still
following a fully classical description of light. How-
ever, fundamentally light consist of photons and has
quantum mechanical properties. To describe this
‘quantization” of light into a discrete number of par-
ticles, each ‘'mode’ (solution of Eq. (1)) is treated as
a quantum harmonic oscillator. This means that for
each mode a creation operator @' and an annihilation
operator @ are defined by:

a'ln)=+vn+1n+1) (6)
ln) = Viln—1). 7)

In this |n) describes a state which has n photons in
the described mode. Therefore, creation and annihi-
lation operators are ‘adding” and ’“subtracting” exactly
one photon from said mode. The complete light field,
which consists of infinitely many of such modes then
consist of infinitely many quantum harmonic oscilla-
tors. Since the continuous waves are a complete basis,
every state of light can be represented by the operators
d"(w), which describe the creation of a photon with
frequency w.

For example, to describe a single photon in a pulsed
mode (with a spectrum E(w)) we can use these oper-
ators and construc the state

11) g0y = f dwE(w)d'(w)10). (8)
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The resulting state corresponds to a superposition
of single-photon states with different frequencies
d"(w)|0), weighted by the spectrum. Note however
that we also can define the operator £ which then di-
rectly describes the creation of a photon in the pulsed
mode®.

4 Spectrally entangled photons

The quantum nature of light only really reveals itself
once multiple photons are considered together, since
then effects like entanglement can occur. Here, we will
consider a special type of entanglement between two
photons. Namely we are speaking about frequency en-
tanglement, which reveals itself in correlation in the
frequencies of pulses. Such states can for example be
generated in so called non-linear’ crystals, in which an
input photon (called pump) can split into two photons
(called signal and idler). A general pure two-photon
state created in such a process can be written as

) = f deode; JSA(w,, @) & ()b (@) 10,0) (9)

Here, we use to different operators @ and b to account
for the fact that signal and idler photons have different
polarization. Note, that this formulation is very sim-
ilar to Eq. (8), but here the 2D function JSA(w;, w;)
is determining the weights in the superposition of the
two-photon states. This function is called ‘joint spec-
tral amplitude” and it describes the correlations be-
tween the frequencies of the signal and idler photons.
A common way to reveal these correlations is by per-
forming a so called Schmidt decomposition, which is
similar to the 1D decomposition of E(t) we have dis-
cussed previously, however here it is decomposing a
2D function. This Schmidt decomposition of the JSA
gives

JSA(w,, ) = Y riAy(w)By(w)),
k

(10)

where r; are so called Schmidt coefficients and repre-
sent the ‘weights’. The sets of functions {A;(w;)} and
{Br(w;)} form complete bases of the signal and idler
spaces. Crucially, in a Schmidt decomposition these
functions are paired (e.g. A; <= By). This is illustrated
for the example of 2D Gaussian shaped JSA in Fig. 3.

3Mathematically this corresponds to a basis change. For example
we can also work in the basis of Hermite-Gaussian modes.
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Figure 3: a) Schematic of the generation of a photon pair in a non-linear crytal. b) Depiction of the Schmidt decomposition
of a joint spectral amplitude

In this case the Schmidt decomposition results in pairs
of Hermite-Gaussian function.

Inserting the decomposed JSA into Eq. (9) then al-
lows to rewrite the state in terms of operators corre-
sponding to the pulsed mode:

%) = D rdyBL10,0), (11)
k
where A}( e fdcoA(co)de(co) and fi,’( =
fdcoB(co)ki)T(w) are the generation operators for
the pulsed modes.

From Eq. (11) the entanglement becomes apparent,
because it basically says: "When the idler is detected
in, for example, mode B; then the signal photon col-
lapses to mode A;". Only, for the case when only one
Schmidt coefficient is non-zero the state is not entan-
gled, since in this case the detection of the idler does
not influence the signal.



