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A bit is the basic unit of  classical information and is represented by a binary digit, indicated with 0 
and 1. Its state is therefore either 0 or 1. For quantum systems, the special property of  superposition 
allows for the state of  the qubit to be in both states simultaneously, mathematically represented as a 
linear combination of  the two corresponding basis vectors. Using the ket notation, the orthonormal 
basis vectors are usually identified as  and . Together, they form the so-called computational 
basis  for the qubit’s Hilbert space. Therefore, the general state of  a qubit can be written 
as 

  
where  and  are two complex numbers such that , due to the normalisation 
condition .  

While we can check whether a bit is in state 0 or 1, and this is in fact what classical computers do all 
the time, checking the state of  a qubit requires performing a measurement, which generally alters its 
state (see Quest entry on measurement). A single measurement on a qubit only reveals partial 
information about its previous state. For instance, if  we measure in the computational basis, we 
obtain the results 0 or 1 with probability  and , respectively. Despite their weirdness, the 
properties of  qubit states described above are actually what lies at the core of  quantum computation 
and quantum information. More precisely, quantum computing exploits quantum interference (see 
entries on superposition and wave-like behaviour) of  many-qubit states to speed up calculations. 

A useful way of  visualising qubits is the following geometrical representation. Since 
, we can rewrite the state of  the qubit as  

  
where  and  are all real numbers. Notice that, while it may apparently seem that  is 
identified by four degrees of  freedom, as  and  are both complex numbers, the normalisation 
condition reduces this number to three. Moreover, since in Quantum Physics there are no 
observable effects due to global phases, we can ignore the factor  and assume  to be real, leading 
to 

  
The numbers  and  can be identified as coordinates on a sphere (or, more precisely, a sphere with 
radius equal  to 1), as shown in the figure. 
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This is the famous Bloch sphere, which can be exploited to 
visualise single-qubit states and often helps to illustrate ideas 
about quantum computation and information, since it can be 
easily used to represent graphically the operations that can be 
performed on single qubits.  

A classical bit could only be at the North Pole or at the South 
Pole, where the states  and  are (notice, however, that 
this choice of  the polar axis is completely arbitrary). A qubit 
state can be instead represented by any point on the surface, 
i.e., it can lie anywhere on the sphere.
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In other words, the surface of  the sphere represents the space of  the qubit states, which is indeed a 
two-dimensional Hilbert space. Its two degrees of  freedom can be then identified by the two angles 
 and .  
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