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A physical system can be any part of  the Universe that we want to study: a planet, a car, an atom, 
an electron. What is not included in the chosen physical system constitutes its environment. The 
environment and the physical system generally interact with each other. Nevertheless, it can happen 
that such interactions are not significant enough to have a noticeable effect on the physical system 
that we aim to analyse and therefore they can be ignored. In these cases we say that the system is 
“isolated”: the only parts that interact are the inner parts of  which the system is composed, whereas 
everything else can be omitted.  

Before deepening into quantum theory, let us notice that the proper language of  physics is 
mathematics. Perhaps it may seem surprising but, of  all branches of  theoretical physics, quantum 
physics is the one using the simplest mathematical formulation: all we need is linear algebra. Let us 
recall very briefly some of  the tools that we are going to use. We’ll start from the Hilbert space, , 
which is a complex vector space where an inner product is defined, i.e., a product between the 
elements of  the space. Being  a vector space, its elements are vectors and, to identify them, we use 
the bra and ket notation introduced by P. A. M. Dirac. The symbol of  the ket is , so that 
considering its dual , named bra, the inner scalar product of  the Hilbert space is identified via 

, known as braket. The elements of  , the kets, are characterised by the following properties: 
the sum (adding two kets together gives another ket) and the multiplication by a scalar (the product 
between a complex number and a ket is another ket); thirdly, the definition of  the inner product as a 
scalar product, i.e. the operation  is an application which associates 2 elements of   with a 
complex number. While the first two properties are shared by all vector spaces, the third one 
characterises  introducing the concept of  norm, i.e., of  distance, or difference between two 
objects. From the last property we can define orthonormality: two vectors  are orthonormal 
if  , with  if  ,  otherwise. In order to build the Hilbert space, it’s always 
possible to choose an orthonormal basis  in terms of  which every other vector of   can be 
obtained as a linear combination. The number of  vectors included in the basis, or, in other words, 
the vectors necessary to span the Hilbert space, defines the dimension of  . Lastly, let us notice that 
the peculiarity of  the Hilbert space essential for quantum physics is its property of  being separable. 
This means that its dimension is numerable, because it has the same cardinality of  the basis: in plain 
words, we can count it.  

The first postulate of  quantum mechanics defines the states of  any isolated physical system: 
given one such system, we associate to it a Hilbert space . Each physical state of  the system is 
described by a normalised vector of  , that is, represented as , such that . The 
opposite is also true: each normalised element of   represents a possible state of  a physical system. 
The normalised vectors are sometimes referred to as physical states, while unnormalised vectors are 
instead exclusively mathematical objects.  

We notice that Hilbert spaces associated to different properties of  the same physical system can have 
different dimensions. For example, if  we consider an electron in a given potential, the Hilbert space 
associated to its spin has dimension equal to 2; the Hilbert space associated to its energy has instead 
infinite dimension.  

Describing a physical state by a ket is something fixed by the postulate: it doesn’t derive from any 
theorem and cannot be really demonstrated experimentally, in the sense that what we get from the 
experiments certainly agrees with this idea, but alternative descriptions may also be possible. In 
Classical Mechanics, a physical state is a point in the phase-space, e.g., representing a car that at the 
instant t has a speed of  50 km/h and it is in a certain position on the street; in thermodynamics it 
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could be a point in a pressure-volume diagram, representing a particular condition of  the 
macroscopic parameters pressure and volume in which the system is at a certain time. One could 
think that it’s not a big issue to use a ket or a point for describing the state of  a system; as we will see, 
this apparently innocuous choice is instead a radical one, and it has tremendous consequences which 
will actually allow us to formally represent the most striking features of  quantum physics! 

Since the states of  physical systems are identified by vectors, there is indeed a huge innovation: we 
can sum them! In a sense, quantum physics gives us the possibility to operate with the states. It is 
possible to do something with them. This was not the case of  the points embodying the classical states: 
we can sum their coordinates, but not the points themselves. In other words, we cannot do anything 
with classical states, we can only represent them. 
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