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Despite its centenary life, QP is still a theory that presents mysteries and open fundamental 
questions, even for people working with it and exploiting it everyday. A large part of  the still-existing 
doubts is connected with the crux of  this theory, the notorious “quantum measurement problem”.  

While there aren’t particular issues with the first and the second postulate, since they deal with the 
mathematical structure of  the theory for which is easy to find a common accepted ground, with the 
third one all chickens come home to roost. The third postulate is indeed the one about measurement 
and it is made of  two parts: the first one, on which everyone agrees, is contained in all the existing 
variations of  the quantum measurement process and that’s why it is called minimal interpretation; the 
second one is the more delicate part, because it is related to the different interpretations of  the 
theory. To get an idea, have a look at the page “Interpretations of  Quantum Mechanics” on 
Wikipedia (https://en.wikipedia.org/wiki/Interpretations_of_quantum_mechanics), where you can 
find a good recap and a useful table with comparisons between the different interpretations. Among 
the most famous ones, we mention the Copenhagen and the many-worlds. But the point is that, at 
least for now, there is no way to experimentally prove which interpretation of  QP is the correct one: 
that’s why you are free to choose your favourite one. The reason why we can be quite anarchist 
about the second part of  the third postulate, is that the existence of  several interpretations does not 
undermine at all the solidity of  the theory itself. Therefore, we can initially avoid worrying too much 
about them, and focus instead on the minimal interpretation.  

Let us consider a quantity that characterises the physical system, specified by some values. In order 
to get information on such values, i.e., in order to acquire knowledge on the system, we need to 
perform some measurements. The quantities that we can measure are called “observables”: in QP 
there is indeed a tight connection between the observation and the measurement, to the point that 
we can consider observing and measuring as synonyms. For example, the energy, the position, and the 
momentum of  a system are some of  its observables. Performing a measurement on a system means 
that there is an experimental apparatus that associates a number, , the result, to every 
measurement. In QP the measurement is indeed an active operation: mathematically, in order to get 
a result, we need to act on the state of  the system with an operator that, loosely speaking, is able to 
“extract a number”. A particularly simple operator that can be associated to each result is a projector, 

. Projectors are operators such that  
  with  ,                   

implying that  is an orthonormal basis for the system’s Hilbert space . Given an observable 
 and a set of  its results , a measurement is an application that associates to each result a different 

projector, namely 
 with  . 

The third postulate of  quantum mechanics (minimal interpretation) states that the 
probability of  obtaining the result  when performing a measurement on the observable  on a 
system in state  is  

. 
The property  and the normalisation of  the states, , guarantee that the sum 
of  the probabilities related to the whole set  gives , i.e., , as it must be the case 
for a probability distribution.  

Given that  is an orthonormal basis of  the Hilbert space, every state  in  can be 
written as a linear combination of  such basis states, 
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Inserting this expression into the previous one, we get  
 

which is the so-called Born’s rule. Keeping in mind such rule and the decomposition of  the state 
, the third postulate can be expressed as follows: “when performing a measurement, the 

probability of  observing the outcome corresponding to state  is given by the square modulus of  
its coefficient ”.  

Pay attention! This doesn’t mean that such probability represents the probability for the system to be 
in the state . As it follows from the first postulate, the system is in the state , which is perfectly 
defined even if  rewritten as a sum of  several kets: it’s the superposition principle. The result  
related to the state  represents only one of  the possible measurement outcomes, since it is 
associated to one of  the kets composing the state . Obtaining a given result from the 
measurement doesn’t imply, however, that the system was in the corresponding state before the 
measurement. The probability stems from the superposition, and QP only tells us which is the 
probability to get a certain result when we perform a measurement. As odd as it may seem, this is all 
that the theory allows us to know. Nevertheless, it is relevant to notice again that it’s only at this stage 
that the probabilistic part of  the theory enters the scene: before observing the system, everything is 
deterministic. 

Once the measurement is performed and the result  is obtained, you may  naturally wonder what 
happens to the system that we observed. The answer is it depends. From this point onwards, we enter 
the territory of  the different interpretations: as a matter of  fact, QP foresees very different fates for 
the observed systems according to the chosen variation. 
 
A phenomenon that you might have heard in connection to quantum measurement is the so-called 
“wave-function collapse”, or, in more modern terms, quantum state reduction. It’s included in 
the greater part of  the interpretations and it’s due to the action of  the measurement: 

  with probability  ,  

which, in words, means that after the measurement the system will be in the state , if  the 
measurement result is . It is as if  the measurement is so invasive as to destroy the initial 
superposition. Of  course, this can eventually happen if  and only if  the system keeps existing, since 
often physical measurements destroy the system itself, as in the case of  a photon revealed by a 
detector.  

One of  the most famous interpretations, the Copenhagen one, spread the belief  that we do not see 
quantum superpositions because QP holds true on smaller scales (of  energy and time) with respect 
to those typical of  the experiments. Today we know that this is not exactly the case: QP does not 
hold true on small scales only, but independently on the scale. When the number of  particles that 
compose a quantum system becomes very large, the system generally displays physical behaviours 
that we can explain with Classical Mechanics. However, there are nowadays several examples of  
macroscopic physical systems that display, instead, an intrinsically quantum character. 

We know that a single measurement on a quantum system does not tell us much about it: the system 
is generally not described by a single state , but by a linear combination of  those basis vectors. 
It’s the vectorial structure itself  that, in general, forbids us to obtain a deterministic answer when we  
interrogate the system through the measurement. In order to obtain the complete probability 
distribution, we must repeat the same experiment, performed in exactly the same way, many times. 
Nevertheless, notice that cases in which the measurement outcome is certain do actually exist: 
whenever the state of  the system is one of  the states  corresponding to one of  the projectors 
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 of  the measurement we are performing. In this situation, we obtain outcome  with  
certainty, since . 

To every observable  it is possible to associate a measurement operator  defined in terms of  the 
sum of  the projectors , each related to the respective outcome , as 

 

Since the results  of  the measurements are always real numbers, the operator  is Hermitian, i.e., 
. The decomposition above is the one given by the spectral theorem. The operator  gives a 

certain answer when the system is in one of  its eigenstates ; so if  this is the case, we can get 
only one possible result performing the measurement, and it will always be the same every time we 
repeat the measurement. Therefore, in a sense, the answer that the system gives to the  question we 
ask when we perform a measurement may be probabilistic or not. When we do not know anything 
about the physical system under analysis, it’s really difficult to find “the right question”, namely a 
question which does not give a probabilistic answer; when instead we control the preparation of  the 
system, for example, if  we make an experiment to generate a given quantum state with high 
precision, the scenario changes completely. This is in fact what generally the experimental physicists 
do when they design their experiments, helped by the theoretical physicists who create 
representative models of  the different physical systems. Concluding, if  you find and ask the “right 
question”, the answer that the system gives is deterministic. As Born replied to Einstein’s objection 
“God does not play dice with the universe”: “Not only God plays dice, but they are also fixed”. 

Repeating the measurements many times, we can infer the complete probability distribution 
 through which it is possible to calculate the mean value of  observable . Indeed, 

exploiting the ket-bra notation, we define the expectation value of  , as  
. 

This expression is akin to the definition of  mean values for classical stochastic processes. Moreover, 
although here we used discrete variables, generalising to the continuous case is simple. It is only a 
formal issue, not related to the definition of  measurement itself.  Whether the energy spectrum is 
discrete or continuous depends solely upon the system’s features.  

Let us conclude by noticing one of  the peculiarities of  QP, constituting the essence of  the concept 
of  measurement, namely the active role of  the observer in the process. In order to perform a 
measurement the system and the apparatus need to interact, so that the latter can acquire 
information on the former. In the classical case, an idealised perfect measurement reveals the 
physical properties of  the system without altering its state. In QP, this is fundamentally impossible in 
general. An idealised perfect quantum measurement generally changes the state into an eigenstate 
of  the observable . In this sense, at variance with classical systems, it is not possible to identify the 
measurement outcome with the state of  the system prior to the measurement. 
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